COMBINATORICA Bolyai Society – Springer-Verlag

NOTE

DISCREPANCY AFTER ADDING A SINGLE SET JEONG HAN KIM, JIŘÍ MATOUŠEK, VAN H. VU

Received April 3, 2002

We show that the hereditary discrepancy of a hypergraph \mathcal{F} on n points increases by a factor of at most $O(\log n)$ when one adds a new edge to \mathcal{F} .

Let X be a set of n points. We say that a hypergraph \mathcal{F} on X has discrepancy h if h is the smallest integer satisfying the following: There is a coloring $\chi: X \to \{-1, +1\}$ such that for every edge $S \in \mathcal{F}$, $|\chi(S)| \leq h$, where we write $\chi(S)$ for $\sum_{x \in S} \chi(x)$.

The hereditary discrepancy of \mathcal{F} is the maximum discrepancy of any restriction of \mathcal{F} to a subset $Y \subseteq X$. Discrepancy and hereditary discrepancy are important notions in combinatorics and discrete geometry; for more information we refer, e.g., to [1] or [2]. Throughout the note, the asymptotic notation is used under the assumption that $n \to \infty$. All logarithms have natural base. We denote by $\operatorname{disc}(\mathcal{F})$ and $\operatorname{herdisc}(\mathcal{F})$ the discrepancy and the hereditary discrepancy of \mathcal{F} , respectively.

The following question is a folklore in discrepancy theory (as far as we could find out, it was first asked by V. Sós some years ago): Given a hypergraph \mathcal{F} , is it true that the hereditary discrepancy of \mathcal{F} increases by at most a constant factor if one adds a new edge to \mathcal{F} ?

As far as we know, there is no published result on this problem, although a polynomial factor can be proved by various arguments. In this note, we prove that adding one edge increases the hereditary discrepancy of \mathcal{F} by a multiplicative factor of at most $O(\log n)$.

Mathematics Subject Classification (2000): 05D40

Theorem 1. Let X be an n-point set and let $\mathcal{F} \subseteq 2^X$ satisfy $\operatorname{herdisc}(\mathcal{F}) \leq h$. Then $\operatorname{disc}(\mathcal{F} \cup \{X\}) = O(h \log n)$.

The following consequence is immediate from the definition of hereditary discrepancy:

Corollary 2. Let X be an n-point set and let $\mathcal{F} \subseteq 2^X$ satisfy $\operatorname{herdisc}(\mathcal{F}) \leq h$. Then for any subset X' of X, we have $\operatorname{herdisc}(\mathcal{F} \cup \{X'\}) = O(h \log n)$.

Proof of Theorem 1. For each set $A \in 2^X$, let $\chi_A : A \to \{-1, +1\}$ witness $\operatorname{disc}(\mathcal{F}|_A) \leq h$. Define two colorings χ'_A and χ''_A of X by

$$\chi_A'(x) = \begin{cases} \chi_A(x) & \text{for } x \in A \\ \chi_{X \backslash A}(x) & \text{for } x \in X \backslash A \end{cases} \quad \chi_A''(x) = \begin{cases} -\chi_A(x) & \text{for } x \in A \\ \chi_{X \backslash A}(x) & \text{for } x \in X \backslash A. \end{cases}$$

Let $\mathcal C$ be the collection of all χ_A' 's and χ_A'' 's. Label each pair $\{\chi_1,\chi_2\}$ of distinct colorings in $\mathcal C$ by the set $\{x\in X:\chi_1(x)\neq\chi_2(x)\}$. Since the pair $\{\chi_A',\chi_A''\}$ is labeled by A, there are at least 2^n distinct pairs, and so $|\mathcal C|\geq 2^{n/2}$.

Divide the colorings in \mathcal{C} into at most n classes according to the value of $\chi(X)$, and let \mathcal{C}_1 be a class with $|\mathcal{C}_1| \geq \frac{1}{n} |\mathcal{C}| \geq 2^{n/2} / n$. The rest is as in the proof of Beck's partial coloring lemma (see, e.g., [1], Lemma 4.13). Since \mathcal{C}_1 is exponentially large, it contains two colorings χ_1, χ_2 differing in at least cn points, for a suitable positive constant c > 0. We form the partial coloring $\chi = \frac{1}{2}(\chi_1 - \chi_2): X \to \{-1, 0, +1\}$. We have $\chi(X) = 0$, $|\chi(S)| \leq 2h$ for all $S \in \mathcal{F}$, and at least cn points of X are colored (meaning that they receive +1 or -1). Next, we restrict \mathcal{F} to the subset $X_1 \subset X$ that received 0 under χ and we repeat the same argument, etc. Iterating $O(\log n)$ times, all points are colored, and the total discrepancy is $O(h \log n)$.

Acknowledgement. We would like to thank K. Vesztergombi for communicating the problem and L. Lovász and B. Doerr for useful discussions. The third author is supported by grant RB091G-VU from UCSD, by NSF grant DMS-0200357 and by an A. Sloan fellowship.

References

- [1] J. MATOUŠEK: Geometric discrepancy (An illustrated quide), Springer, Berlin, 1999.
- [2] J. SPENCER: Ten lectures on the probabilistic method, CBMS-NSF, SIAM, Philadelphia, PA, 1987.

Jeong Han Kim

Theory Group
Microsoft Research
Redmond, WA 98052
United States
jehkim@microsoft.com

Van H. Vu

Department of Mathematics
University of California at San Diego
La Jolla, CA 92093
United States
vanvu@ucsd.edu

Jiří Matoušek

Department of Applied Mathematics and Institute of Theoretical Computer Science (ITI) Charles University Malostranské nám. 25 118 00 Praha 1 Czech Republic matousek@kam.mff.cuni.cz